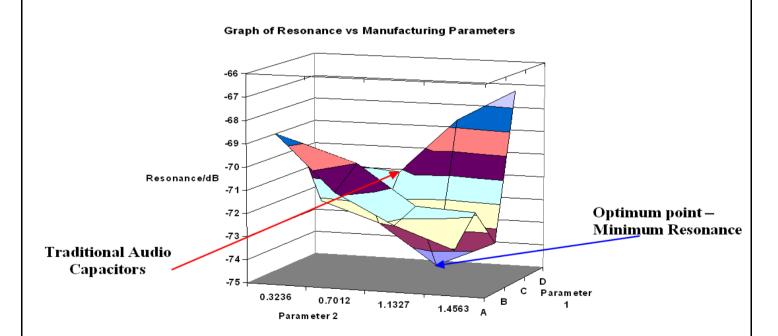
MR Range

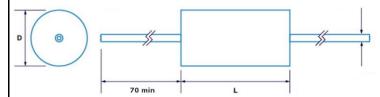
The MR range has been developed as a direct result of the 2-year research programme conducted between ClarityCap and the world-renowned Acoustics

Research Centre at the University of Salford.

No stone was left unturned; the research encompassed all the materials used in audio capacitors and any existing performance data together with analysis of manufacturing processes and techniques. The crucial factor to emerge was the effect that mechanical resonances within a capacitor have on sound quality and the importance of reducing or controlling a capacitor's sonic output.


o ances and the sonic output.

The MR range harnesses all the knowledge gathered throughout the research programme and offers a superior product based upon science and research. In practice the MR range has found acclaim with industry experts, OEM's and audiophiles for its spatiality and excellent separation.


The capacitor employs a non-standard polypropylene film, ultra-pure aluminum metallization and is housed in a coloured acrylic tube, the result of which is a capacitor which virtually eliminates internal sonic resonance. Terminals are hand soldered tinned copper.

A guaranteed 3% tolerance ensures component to component consistency for a balanced system and reproducibility across production runs.

The graph below shows the relative sonic outputs between the SA (Traditional) and MR (Optimum Point) ranges.

Component Outline

Dimensions are shown in mm (max). Intermediate values are available upon request.

Ordering Details

MR 5u6 H 630V

5u6 MЯ Туре Capacitance in nF / μF Н

630V ToleranceRated dc voltage

(3%)

Size Chart						
400Vdc			630Vdc			
Cap	L	D	Cap	L	D	
(nF/µF)	(mm)	(mm)	(nF/µF)	(mm)	(mm)	
330n	40	25	10n	27	25	
470n	40	25	15n	27	25	
680n	40	25	22n	27	25	
820n	40	25	33n	27	25	
1μ0	40	25	47n	27	25	
2µ2	50	38	47n	27	25	
3µ1	50	38	68n	27	25	
3µ3	50	38	82n	27	25	
3µ9	50	38	100n	27	25	
4µ1	50	38	220n	35	25	
4µ7	50	38	330n	40	25	
5µ6	50	50	470n	40	25	
6µ2	50	50	680n	45	25	
6µ8	50	50	820n	40	38	
8µ2	50	50	1µ0	40	38	
10µ	65	50	2µ2	50	38	
12µ	65	50	3µ1	65	38	
15µ	65	50	3µ3	65	38	
16µ	85	50	3µ9	50	50	
18µ	85	50	4µ1	50	50	
22µ	65	76	4µ7	50	50	
27µ	65	76	5µ6	65	50	
35µ	65	76	6µ2	65	50	
			6µ8	85	50	
			8µ2	85	50	
			10µ	85	50	
			12µ	85	76	
			15µ	85	76	
			16µ	85	76	
			18µ	85	76	
			22	0.5	70	

85

85

22µ

27µ

76

76